1) Let an x-triangle be a triangle of x unitusides

By mere counting it can be seen that there are 1-trangles
Moving further we get the following sequence or pattern
Number of 1 -triangles $\rightarrow 120$
Number of 2 -triangles $\rightarrow 114$
Number of 3-trangles $\rightarrow 104$
Number of 4 -triangles $\rightarrow 90$
Number of 5 -triangles $\rightarrow 72$
Number of 6 -triangles $\rightarrow 56$
Number of 7 -triangles $\rightarrow 42$
Number of 8 -triangles $\rightarrow 30$
Number of 9 -triangles $\rightarrow 20$
Number of 10 -triangles $\rightarrow 12$
Number of 11 -triangles $\rightarrow 6$
Number of 12 -triangles $\rightarrow 2$
Hence, the total number of tr angles is $(120+114+104+90+72+56$ $+42+30+20+12+2)=668$

There are 668 triangles in the picture
5) Setting $n=m$, we get
$n^{3}=n^{3}+13 n-273 \Rightarrow 13 n-273=0 \Rightarrow 13 n=273 \Rightarrow n=21$
Giving us the solution, $n=21, m=21$
$m^{3}=n^{3}+13 n-273 \Rightarrow m^{3}-n^{3}=13 n-273=13(n-21)$
$\Rightarrow(m-n)\left(m^{2}+m n+n^{2}\right)=13(n-21)$
it can now easily be seen that for $n>21, m>n$ and for $n<21, m<n$ For $n>21$, we get $m>n \Rightarrow m \geqslant n+1 \Rightarrow m^{2} \Rightarrow 2$ beth positive or both negative and $m^{2}+m n+n^{2}>0$ $m^{3} \geqslant(n+1)^{3}=n^{3}+3 n^{2}+3 n+1$
Hence $m^{3}-n^{3} \geqslant 3 n^{2}+3 n+1>13 n-273=m^{3}-n^{3}$ which is a contradiction Therefore,oon ≤ 21, testing numbers in this range, we get
$n=8, m=7$ and $n=21, m=21$ as the only two solution $n=8, m=7$ and $n=21, \bar{m}=21$ as the only two solutions
Hence, the sum of all cubs is $8+21=29$
3) Let us first draw the graph of lines $(y+\sqrt{x})=0,\left(y-x^{2}\right)=0$ and $\sqrt{1-x}=0$

It is easy to see that the rest of the options lead to a contradiction laving us with, $y+\sqrt{x} \geqslant 0, y-x^{2} \leqslant 0, \sqrt{1-x} \geqslant 0$ <W ecan also see that the rest give infinite areas>
Giving us the shaded region.

$$
\begin{aligned}
& \int_{0}^{1}\left(x^{2}\right) d x-\int_{0}^{1}(-\sqrt{x}) d x=\left(\left.\frac{x^{3}}{3} \right\rvert\, 0\right)-\left(-\left.\frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{1}\right) \\
& =\left(\frac{1}{3}-0\right)-\left(-\frac{2}{3}-0\right)=\frac{1}{3}-\left(-\frac{2}{3}\right)=1
\end{aligned}
$$

Hence, the area of the set of points is 1

Because of $\sqrt{1-x}, x \leq 1$ and $\sqrt{x}, x \geqslant 0$; hance $0 \leq x \leq 1$. As summing that $y+\sqrt{x} \leq 0$ and $4-x^{2} \geqslant 0$, then $y+\sqrt{x} \leq 4-x^{2} \Rightarrow \sqrt{x} \leq-x^{2}$ but \sqrt{x} is positive and x^{2} is negative.
4) Given that they all gave distinct numbers of gifts; the maximum of gifts each child can give is $(n-1)$ and the minimums O. Meaning that, there are n distinct numbers of gifts possible for each child to give and n children available. Since they all gave distinct numbers; then, every number was given by a particular child. Leaving us with the pattern

$$
\begin{array}{c|cccccc}
\text { Child } & A_{1} & A_{2} & A_{3} & \ldots & A_{N-1} & A_{N} \\
0 & 1 & 2 & \ldots & N-2 & N-1
\end{array}
$$

where $A_{i}(1 \leq i \leq N)$ are the children
At this point, it is easy to see that the number of gifts can only be evenly distributed when $N \mid 0+1+2+\cdots+(N-1)$

$$
\Rightarrow N \left\lvert\, \frac{(N-D(N)}{2}\right.
$$

Which is only possible when N is odd Hence it works for only odd $N>1$
2) Let the height be h.

Hence, the distance from A to $C D$ is $\frac{9 \sqrt{3}}{2}$

