Problem 1.
Any three non-parallel, non-concurrent lines form a unique triangle
There are three groups of parallel lines, any two lines in the same group are parallel There are 9 lines in each group
So there are 9^{3} ways of choosing non-parallel lines
Any point that lies on three lines is the point of concurrency of three nuo-parallel lines
There are 61 such points meaning that there are 61 triplets of non-parallel lines that are concurrent \Rightarrow There are $9^{3}-61$ ways of choosing three nun-concurrent, non-parakl lines \Rightarrow There are $9^{3}-61$ triangles in the figure

Problem 2.

The sum of angles in the polygon is 540 meaning that $\angle B=\angle C=\angle D=\angle E=120^{\circ}$

Problem 3.
$\sqrt{1-x}$ is defined for $1-x \geqslant 0 \Rightarrow 1 \geqslant x$
Since $\sqrt{1-x} \geqslant 0$

$$
\begin{aligned}
& (y+\sqrt{x})\left(y-x^{2}\right) \sqrt{1-x} \leqslant 0 \\
& \Rightarrow(y+\sqrt{x})\left(y-x^{2}\right) \leqslant 0
\end{aligned}
$$

if $y+\sqrt{x}<0$, then $y-x^{2} \geqslant 0$

$$
\begin{gathered}
\Rightarrow y \geqslant x^{2} \\
\Rightarrow y \geqslant x^{2} \geqslant 0 \\
\Rightarrow y \geqslant 0
\end{gathered}
$$

$\Rightarrow 0>y+\sqrt{x} \geqslant 0 \Rightarrow 0>0$ a contradiction

Problem 3 continuation

$$
\begin{aligned}
& \Rightarrow y+\sqrt{x} \geqslant 0 \text { and } y-x^{2} \leqslant 0 \\
& \Rightarrow y \geqslant-\sqrt{x} \text { and } y \leqslant x^{2} \\
& \Rightarrow x^{2} \geqslant y \geqslant-\sqrt{x}
\end{aligned}
$$

Here we find the area of the region that satisfys the inequality in the range $x \in[0,1]$

$$
\begin{aligned}
& =\int_{0}^{1} x^{2} d x-\int_{0}^{1}-\sqrt{x} d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{1}-\left[-\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1} \\
& =\left[\frac{1}{3}-0\right]-\left[-\frac{2}{3}-0\right] \\
& =\frac{1}{3}+\frac{2}{3} \\
& =1
\end{aligned}
$$

\Rightarrow The area of the region that satisfies this is 1 .

Problem 4.
The number of gifts a child gives is an element of $\{0,1,2, \ldots, N-1\}$ and there are N children, so only one child gives a particular number of gifts and every number of gifts is given by exactly 1 child.
Let a_{i} denote the children were a_{1} gives 0 gifts, a_{1} gives 1 gift,, a_{N} gives $(N-1)$ gifts.
The total number of gifts given $=(0+1+2+\cdots+(N-1))=\frac{(N-1) N}{2}$
$I N e$ are told that this number is divisible by M

$$
\Rightarrow N \left\lvert\, \frac{N(N-1)}{2} \Rightarrow N M=\frac{N(N-1)}{2} \Rightarrow M=\frac{N-1}{2} \Rightarrow 2 M+1=N \Rightarrow N\right. \text { is odd }
$$

We claim that there is a way that the children can give out gifts such that everyone gets an equal number of gifts.
proceed with the following algorithm
$a_{2 n+1}$ gives each of his $2 m$ gifts to $a_{1}, a_{2}, \ldots, a_{2 m}$
$a_{2 m}$ gives each of his $2 m-1$ gifts to $a_{1}, a_{2}, \ldots, a_{2 m-1}$
a_{m+2} gives his $m+1$ gifts to $a_{1}, a_{2}, \ldots, a_{m+1}$
a_{m+1} gives his m gifts to $a_{2 n+1}, a_{2 n}, \ldots, a_{n+2}$
a_{n} gives his $m-1$ gifts to $a_{2 m+1}, a_{2 m}, \ldots, a_{m+1}$
a_{2} gives his I gift to $A_{2 m+1}$
a_{1} has nothing to give
After applying this algorithm, everyone recieves N gifts.
$\Rightarrow N$ being an odd number is a necessary and sufficient condition for the sharing to occur

Problem 5:
m is a positive integer so $m^{3} \geqslant 1 \Rightarrow n^{3}+13 n-273 \geqslant 1 \Rightarrow n \geqslant 6$
Claim: $(n+1)^{3}-n^{3}>13 n-273$
Proof:

$$
\begin{aligned}
& n^{3}+3 n^{2}+3 n+1-n^{3}>13 n-273 \\
& 3 n^{2}+3 n+1>13 n-273 \\
& 3 n^{2}-10 n+274>0 \\
& n^{2}-\frac{10}{3} n+\frac{274}{3}>0 \\
& n^{2}-\frac{10}{3} n+\frac{25}{9}+\frac{797}{9}>0 \\
& \left(n-\frac{5}{3}\right)^{2}+\frac{797}{9}>0
\end{aligned}
$$

which is true hence proving the claim.

$$
\begin{aligned}
& n^{3}=n^{3}+13 n-273 \\
& n^{3}-n^{3}=13 n-273 \\
& \text { if } n>21 \\
& n^{3}-n^{3}=13 n-273>0 \\
& \quad \Rightarrow n^{3}>n^{3} \Rightarrow n^{3} \geqslant(n+1)^{3} \\
& 13 n-273=n^{3}-n^{3} \geqslant(n+1)^{3}-n^{3}>13 n-273 \text { from the claim } \\
& \quad \Rightarrow 13 n-273>13 n-273 \text { a contradiction } \\
& \quad \Rightarrow n \leqslant 21 \\
& {[1] \Rightarrow 6 \leqslant n \leqslant 21}
\end{aligned}
$$

Testing the integers in the range, we get that $\sqrt[3]{n^{3}+13 n-273} \in \mathbb{Z}$ only when $n=8$ or $n=21$ $\Rightarrow 8$ and 21 are the only kubos

$$
\Rightarrow \text { The sum of all cubos }=8+21=29
$$

