
# 1. As shown, the figure has been divided into three identical 
parts: red, blue, and green. The figures are identical because the 
blue and red figures are already in the correct orientation, and 
the green figure needs to be rotated to fit them. Also, all the 
pieces have exactly 7 hexagons. ☐ 
 



# 2. No. Their product cannot end with 2017. This is because 
2017 is odd, and the last digit of the product of two consecutive 
integers is even.  

This is because if the first number is even, then the product is 
even. If the first number is odd, then the second number must be 
even, so either way their product will be even. Thus, the last 
digit of the product of two consecutive numbers is even. ☐ 



# 3. No. It is impossible to choose some of them so that their 
sum is 1 kilogram. 

Assume there are n weights. The average of the weights must be 
1000 ÷ n grams. If this is the average, there must be some 
weights greater than it and some weights lower than it (like a 
balance scale, there must be some on both sides).  

Let’s look at one case, n = 5. Then 1000 ÷ 5 = 200 grams. 
However, there are no weights greater than 200 grams. Thus, 
this does not work.  

Note that when n is even smaller, the average weight will 
increase. However, there will be no weights greater than the 
average weight. Thus, all n such that n ≤ 5 are not possible 
values. 

Let’s look at another case, n = 6. Then 1000 ÷ 6 ≈ 167 grams. 
However, there are no weights less than 167 grams. Thus, this 
does not work. 

Note that when n is even larger, the average weight will 
decrease. However, there will be no weights less than the 
average weight. Thus, all n such that n ≥ 6 are not possible 
values. 

Thus, there are no values for n, so it is impossible. ☐ 



# 4. 16 important moves must be made during the process. 
Note that combining a number with a zero is not important. This 
is because x + 0 = x, and x is not greater than x. Thus, we can 
ignore all the zeroes. 

Note that if a > 0 and b > 0, then a + b > b and a + b > a. These 
are true because these are defined from our original inequalities! 
Adding b to both sides of a > 0 yields a + b > b, and adding a to 
both sides of b > 0 yields a + b > a. Thus, given our first pair of 
statements are true, the second pair is also true, or 

If a > 0 and b > 0, then a + b > a and a + b > b. 

I’ll refer to this theorem as Theorem 1. 

Right now, we have 17 ones. Note that no matter how we 
combine the remaining numbers, all moves will be important. 
According to Theorem 1, their sum will be greater than each of 
the numbers, and all numbers left are greater than zero (you 
can’t make zero with numbers greater than zero with only 
addition). Thus, there is only one possibility of total number of 
important moves.  

Note that each move takes two numbers and makes it one, thus 
making the total number of numbers decrease by 1. To get from 
17 numbers to 1, we will have to do 17 - 1 = 16 “important” 
moves. ☐  



# 5. The numbers 12, 15, 18, 21, 24, 27, 30, and 33 are all 
possibilities. 

There can be only one lollipop with both apple flavor and from 
Russia. As such, there are 6 lollipops with Russia but not apple 
flavor and 4 that are not from Russia with apple flavor. Then, 
there must be 5 countries and 7 flavors. There are a minimum of 
5 + 7 = 12 lollipops, and a maximum of 5 × 7 = 35 lollipops, so 
the possibilities, from 12 to 35, inclusive. However, note that 
this number must be a multiple of three, because any two 
lollipops different by both flavor and country have to have a 
third lollipops. Thus, the numbers that work are 12, 15, 18, 21, 
24, 27, 30, and 33. 

No other possibilities exist because there will be two of the same 
country and flavor, which is not permitted. ☐ 



# 6. The largest number the rider can get to is 52.  

Note that if we want the rider to go as far as possible, we should 
use a number only when it is a multiple of the pole that we are 
currently on. This is because we will use the number to its 
maximum (going forward as much as possible) because we will 
go that number of spaces (for example, if we are on a multiple of 
8, we will pick 8 so we go forward 8 spaces).  

Thus, our rule is: 

Say the largest number that is a factor of the number you are 
currently on and that you have not said before.  

Doing this, we start at 0. 

We get this diagram. 

The red numbers indicate what the rider says. Note that at 35, 
the factors of 35 less than 11 are 7 and 5, both of which have 
been said. We check all possible combinations and see that 
saying “8” will get us the farthest. Note that the reason we say 
“2” at 40 instead of “4” is because 40 + 2 = 42, and 42 is a 
multiple of 6. As shown, the largest value you can get to is 52. 

I have also found another solution: 10, 5, 3, 6, 8, 4, 9, 7, 1, 2. 
This will also get you to 52. ☐ 



# 7. Liz can paint the squares in 232 ways. 

I will divide the counting into three categories: squares on 
opposite corners, squares that share a side on a large side 
completely, squares that are on a large side “incompletely”. 

For the squares on opposite corners, like the ones 
shown in the diagram, there are 6 possible pairs of sizes 
of the squares, which I will denote as ordered pairs, the 
first number representing the side length of the first 
square, and the second number representing the side 
length of the second. 

{(1, 5), (1, 4), (1, 3), (1, 2), (2, 4), (2, 3)} 

Note that the order of the squares does not matter, because the 
board can be rotated 180 degrees to form the other ordering. As 
such, there are 4 rotations for each pair of squares, so there are a 
total of 6 × 4 = 24 ways for the squares on opposite corners. 

For the squares that share a side on the large side 
completely, like the ones shown in the diagram, their 
side lengths must add up to six. The only two pairs that 
satisfy this are: 

{(1, 5), (2, 4)} 
Notice, though, that if we flip it upside-down, we get a 
whole new set, that can be orientated in four more ways. 
Thus, there are a total of 2 × 8 = 16 ways to paint the 
board like this. 



For the squares that are on a large side “incompletely”, 
like the ones shown in the diagram, the sum of their 
side lengths must not equal six. Four pairs satisfy this: 

{(1, 4), (1, 3), (1, 2), (2, 3)} 
 

Notice that there are many ways to position the squares, 
however. We can position it like on the right, or move the 
entire figure one unit to the left. The number of ways we 
can position the squares is the number of ways we can 
order the side lengths 1, 4, and 1. The one and four come 
from the sides of the squares, and the last one comes from 
the unpainted part. Three “positions” are possible. As such: 

There are 3! or 6 positions for (1, 4). 
There are 3! or 6 positions for (1, 3). 
There are 3! or 6 positions for (1, 2). 
There are 3! or 6 positions for (2, 3). 
There are a total of 6 + 6 + 6 + 6 = 24 positions. 

Notice, though, that if we flip it upside-down, we get a whole 
new set, that can be orientated in four more ways, just like last 
time. Thus, there are a total of 24 × 8 = 192 ways to paint the 
board like this. 

Adding all three ways together gets 24 + 16 + 192 or our total of  
232 ways. ☐ 


